پیش بینی سری های زمانی رواناب توسط مدل های ناپارامتریک با استفاده از آزمون گاما
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده کشاورزی
- نویسنده میثم سلیمانی ساسانی
- استاد راهنما سیدرضا هاشمی
- سال انتشار 1390
چکیده
جهت مدیریت مناسب در یک حوضه هیدرولیکی نیاز به شناخت کامل آن می باشد . می توان گفت مهمترین بخش از این شناخت مربوط به ارائه مدلی جهت معرفی رواناب آن حوضه می باشد . رواناب به علت نیاز به فاکتورهای اقلیمی مختلف و اثر متقابل این فاکتورها بر هم دیگر یک پدیده ی غیرخطی و پیچیده است و نمی توان با روش های خطی مدل مناسبی استخراج نمود . لذا در این تحقیق از روش های غیرخطی جهت مدل سازی استفاده خواهیم کرد . یکی از مراحل پیچیده در مدل سازی سیستم های غیرخطی ، پیش پردازش پارامترهای ورودی جهت انتخاب ترکیبی مناسب از آنها است . پیش پردازش داده ها سبب کاهش مراحل سعی و خطا و شناخت مهم ترین پارامترهای موثر بر پدیده ی مورد نظر جهت مدل سازی با استفاده از روش های هوشمند می-گردد. در این مطالعه که در حوضه بالادست سد طرق انجام گرفته است رواناب را با پنج روش که شامل رگرسیون خطی محلی ، رگرسیون خطی محلی دینامیک ، شبکه عصبی با دو لایه برگشتی ، شبکه های عصبی با کاهش شیب توأم و شبکه-های عصبی bfgs پیش بینی می کنیم . برای پیش پردازش پارامترهای ورودی و تعیین بهترین ترکیب داده های ورودی از آزمون گاما استفاده شده است . مدل های بدست آمده را با روش های آماری مختلف مقایسه کرده و بهترین آن ، مدل بدست آمده از روش شبکه ی عصبی bfgs با داده های میانگین متحرک هفت روزه معرفی شده است .
منابع مشابه
پیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی
امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...
متن کاملکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
متن کاملبررسی و پیش بینی وضع آلاینده های هوای شهر کرمان با مدل سری های زمانی
Anderson, H.R., 2009. Air pollution and mortality: A history. Atmospheric Environment, 43, pp. 142-152 . Box, GEP. and Jenkins, G.M., 1976. Time series analysis: forecasting and control, San Francisco, Holden Day Pulications . Duenas, C., Fernandez, M.C., Canete, S., Carretero,Liger E, 2005. Stocastic model to forecast ground level ozone concentration at urban and rural areas . Chemospher...
متن کاملمقایسه دقت پیش بینی سود توسط مدیریت با سری های زمانی باکس-جنکینز
در این تحقیق تلاش محقق بر این است که برای پیش بینی EPS شرکتها، مشهورترین روش های پیش بینی را در مقایسه با پیش بینی های مدیریت در بودجه شرکتها مورد مقایسه قرار دهد. بدین منظور از بین روش های گوناگون پیش بینی، مشهورترین آنها (روش باکس-جنکینز) انتخاب و برمبنای روشهای اقتصاد سنجی، مدل مناسب برازش میشود. بدیهی است براساس روشهای صحت سنجی و آزمونهای اقتصاد سنجی، مدل فوق بایستی تایید گردد. در این حا...
متن کاملپیش بینی سیلاب از طریق داده های سری زمانی دبی رودخانه سومبار با استفاده از مدل باکس _جنکینز
امروزه یکی از مهمترین مسائل جهت مدیریت سیلاب، پیش بینی جریان رودخانه ها می باشد. جلوگیری از صدمات اقتصادی و جانی ناشی از سیلاب یکی از مهمترین دستاوردهای پیش بینی صحیح جریان می باشد. فاکتورها و عوامل مختلفی بر روی دبی رودخانه تاثیر گذار است که تحلیل این پدیده را مشکل می سازند. مدلهای فیزیکی-مفهومی، رگرسیونی و سری های زمانی از معمولترین روشهای تحلیل جریان رودخانه می باشند در این تحقیق با استفاده ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده کشاورزی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023